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INTRODUCTION

In this paper we consider monosplines whose kernel is extended totally
positive. We complement our results [1] on the existence of a monospline
of minimal uniform norm by showing it is unique, As an application of these
results we discuss the kernels Ka(x, ~) = (1 - x~)-a and K(x, ~) exp(x~).

MAIN RESULTS

Let K(x, ~) be a real valued kerneL For a given set of odd integers 111

{11l1 ,... , l1lt}, an integer n ;:?o 1 and an interval [a, b] C (0, 1) we consider
the set of all monosplines of the form:

b n-l tmi-]

M(A, x) = JK(x, 0 d~ +- L: a;Kj(x,O) + L: I aijKj(x,O (I)
a j=O i=l j"O

where
o .:( ~l < ~2 < ... < ~] .:( d', a < b < d',

and

Kj(x, ~;) = :;j K(x, ~)i< -f,

Further, with N = n + L;~l (m; + 1), we set

* Supported by the Deutsche Forschungsgemeinschaft while serving as a visiting professor
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Setting Ilfll = maxxE[o,l] If(x)l, our first result is:

21

THEOREM 1. There is a monospline of the form (1) having minimal uniform
norm on [0, 1]. Further, any such monospline M(A, x) has the following
property:

M(A, x) alternates N times, i.e., there are N + 1 points °= Xo < Xl <
... < X N = 1 such that

M(A, Xi) = (_l)i+N II M(A, x)11 i = 0, 1, ... , N.

Proof Using [1, Theorems 1.1, 1.2] the only thing remaining to be
proved is that Xo = 0, X N = 1. This however, follows from the first sentence
of Lemma 2 below. I

In this paper we will be concerned with the uniqueness of the monospline
of minimal uniform norm described by Theorem 1. For this purpose we
will consider the following problems:

A. Given numbers {li}~O where sgn(lk - lk-l) = (- 1)'''I!/., k = I, ... , N,
find A ERN, E E R+ and °= Xo < Xl < ... < X N = 1 such that;

M(A, Xi) == Eli,

M'(A, Xi) = 0,

i = 0,1'00" N,

i cc= 1, ... , N - 1.
(2)

B. Show that the solution to problem A is unique.

[For the remainder of this paper we will consider the numbers {li}~o,

subject to the above conditions, as fixed.].
To treat this problem we need a number of preliminary results.

DEFINITION 1. Let K.,i(x, tk) = (8 j +lj8x8tj
) K(x, t)lg~gk and t =

('1 '00" tt) we then define the symbols

K(x, ~l"ll == [Kl(x, 0), KZ(x, 0), ... , Kn-\x, 0), K(x, tl)"'" K"'l-\X, f l ),

K(x, t2)"'" Km,-l(X, tt), KrII1(X, tl)'"'' Km,(x, 't)]

Kix, ~)N-l == [Kxl(x, 0), Kx
2(x, 0), ... , K:-l(x, 0), Kix, tl)"'" K;!l-l(X, tl)'

Kx(x, tz),oo., K;,,-l(X, tt), K;!l(X, tl)"'" Km,(x, tt)]

(Note the term K(x,O) is missing from K(x, ~)N-l , and Kx(x,O) is missing
from Kx(x, ~)N-l .)

LEMMA 1. The components of the N - 1 row vector Kx(x, ~)N-l form an
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We make the following assumptions for the remainder of the paper.

1. K(x,~) is an Extended Totally Positive kernel of order N in both x
and ~ in (c, d) X [0, d'] (see [8, p. 6]), where c < °< 1 < d'.

II. K(x, 0) is a constant.

Extended Complete Tchebycheff System in (c, d) X [0, d'] of order N -~ 1
(see [8, p. 375]). We will abbreviate this by saying that Kix, g) is an ECT
system.

Proof Since K(x, 0) is a constant, the result follows by using the concept
of the reduced system (cf. [8, pp. 376-7 especially eq. (1.3), (1.4) and also
Theorem 1.1]). I

LEMMA 2. M'(A, x) has at most N - 1 zeros in [0, l] counting multi
plicities. Further if M'(A, x) has N - 1 zeros in [0, l] counting multiplicities
then its free knots satisfy:

and ai,mi-l < °i = 1,... , t; M'(A, l) > 0.

Proof Since Kix, ~) is an ECT system on (c, d) X [0, d'] it follows by
[1, Lemma 1.3] that M'(A, x) has at most N - 1 sign changes in (c, d),
i.e., there exist at most N points c < Xl < ... < X N < d such that M'(A, Xi)!

M'(A, Xi+l) < ° i = 1,... , N - I. From this it follows by a perturbation
argument that M'(A, x) has at most N - 1 zeros counting multiplicities
in [0, l] (cf. [2, Lemma 3, Theorem 2].)

LEMMA 3. If M'(A, x) has N - 1 zeros in [0, l] counting multiplicities,
then the components of A (with ao assumed bounded) are bounded.

Proof We argue by contradiction. Assume there exists a sequence

b n-,·l f 'ml-1

M~(x) = JKx(x, t) d + I a/K/(x,O) + I I a~jK/(x, ~n
(I j=] i=l j=O

with Av unbounded. By Lemma 2 the t/ are bounded. Let a" = max(max#o
I a/ I, maxi,j I aij I); therefore, a" -+ 00.

By picking a subsequence, which we do not relabel we find

where the convergence is in CN[O, 1], i.e. the functions together with their
first N derivatives uniformly converge to s(x) and its first N derivatives.

Since M:(x) has N - 1 zeros on [0, 1] it then follows by Rolle's theorem
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that SeX) has N - 1 zeros on [0, 1]. However since K.,(x,~) is an ECT
system, sex) can have at most N - t - 2 zeros. This contradiction proves
the result. I

DEfiNITION 2. Let A = {A ERN I M'(A, x) has a set of N - I distinct
zeros 0 < xl(A) < xlA) < .,. < XN-1(A) < I}.

The approach we use to solve (2) is to show that a solution to a particular
system of differential equations is also a solution of (2). Our methods are
in the spirit of the work of Fitzgerald and Schumaker [5].

We proceed in the following way. Start with any A E A (by Theorem 1
we know A is not empty). Let

k = 0"00' N

where
M'(A, xk(A» = 0

xo(A) = 0

xN(A) = 1

k = 1'00" N - 1.
(2')

By Lemma 2 sgn(dk - dk-l) = (_1)Nc l. k = 1'00" N.
We now seek the solution of the system of N + 1 differential equations

d d
ds M(A(s), ·\AA(s») = ds £(s) I,. - die k = 0,... , N (3)

with xiA(s» determined from

M'(A(s), xk(A(s») = 0 k = 1'00" N - I

xo(A(s» = 0, xN(A(s» == 1.

Using (3'), (3) becomes

%~ dad;s) Ki(Xk(A(s», 0) + tl ~~l da;;s) Ki(xk(A(s», ~i(S»

t nli- l dg. d
+ i~ i~ aij(s) KHl(Xk(A(s», Us» ds' - ds £(s) I"

= -dk k = 0,. 00, N.

(3')

The initial conditions are A(O) = A, £(0) = O.
If (3) and (3') can be solved, then for arbitrary s the solution will have

the form:

M(A(s), xiA(s») = £(s) lie + (I - s) die k = 0, ... , N
(5)

M'(A(s), xk(A(s») = 0, k = I, ... , N - 1; xo(A(s» = 0, xN(A(s» = 1.

So in particular if we can find a solution of (3) and (3') for all s E [0, 1],
with EO) > 0 we will have solved (2).
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Remark. 1f A EO A, then by Lemma 2 all zeros of M/(A, x) are simple.
It then follows from the implicit function theorem and from M'(A, x,,) = 0,
M"(A, Xk) °that XI. is a locally differentiable function of A.

(4) can be written as

where

B(s) = (A(s), E(s))T is a N + I column vector

D = (-do ,... , -dNY is a N -I-- 1 column vector.

F(A(s)) is a (N +- 1) x (N --1. 1) matrix whose k-th row is:

(6)

Lemma 4.

I ](Yl(Yl,.~(S))Nl Io~Il I
X . . d)\ ... dv v

i K IIN( YN : ~(S))N-l /''Vl '- IN' ..

Proof By subtracting columns it is clear that

f

det F(A(s)) coc ± Il ai,m;-l(S) det pes)
i=l

where P(s) is the (N +- 1) x (N + 1) matrix whose k-th row is:

(8)

Recall that K(x, 0) is a constant. We leave the first row of pes) alone.
If we subtract the k-1'th row from the k'th row and apply the fundamental
theorem of calculus we get a matrix C(s), whose k'th row for k > 1 is:

Xk(A(s,)

[0, f Kyk(h, l(S))V-l dy" /'1 - Ilc ] •
j"7.::-1

Expanding C(s) by the first column we obtain (8). I
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Letting Ao E A, one sees from (8), using the fact that sgn(lk - lk-I) =
(-l)Nk and that K.,{x, g) is an ECT system, that det F(Ao) =1= 0. Hence
near s = 0, with initial conditions A(O) = A, E(O) = 0, (6) can be written

dB(s) = F-I(A(s)) D
ds

(9)

where the right hand side is a continuously differentiable function of A.
Thus for s near °(9) has a unique solution. Let [0, 'I)) be the maximal interval
for which a solution of (9) exists, with A(s) EA. We wish to show 'I) > 1.
This follows from the following lemma.

LEMMA 5. If A(s}, B(s) is Gsolution of (9) with A(s) E A for s E [0,13) 13 ~ 1,
then for some sequence Sv --+ 13, A(sJ --+ A, E(sv) --+ E, A E A. Hence the
solution mo.r be continued beyond 13.

Proof If the zeros of M'(A(sJ, x) are xk(sv), we pick a subsequence for
which all the zeros converge, say limsv~13 Xk(Sv) = Xl.' To show A(s), E(s)
is bounded it is sufficient by Lemma 3 to show oo(s), E(s) are bounded.
Assume for example E(sJ --+ 00 with Go(sJIE(sv) --+ y, Y possibly infinite.
Dividing equation (5) by E(sJ and going to the limit one finds yK(x" ,0) =~~

'" k =, 0,... , N. Since K(x, 0) is a non-zero constant, this is a contradiction.
Thus E(sJ is bounded and again by equation (5), oo(sv) is bounded.

Hence for some subsequence which we do not relabel all the components
of A(sJ and E(sJ converge. Call the limit A, E.

By (5) M(A, ,Xk) = Elk + (1 - j3)dk . We will show in Lemma 6 that
E > 0. From this it follows that M'(A, x) has N - 1 distinct zeros. Thus
A belongs to ./1, and the solution to the differential equation may be continued
beyond 13. (For the general proof that the solution may be continued see
Hartman [6, Chapt. II, Theorem 3.1 and Lemma 3.1].) I

LEMMA 6. If A(s) E A

dE(s) °
~>.

Proof Solving (4) or (6) by Cramer's rule, and applying the method of
Lemma 4 to each of the resulting determinants, we find

dE
-ds- K,,/}'1 , t(S))N_l

KYN(YN ; f(S))N-l
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Since KxCx, s) is a ECT system, and sgn(d" - dk- l ) sgn(l;- Ikt>
(-l)k I-N if we expand by the last column we find the numerator and de
nominator are both of the same sign. I

Combining Lemmas 5 and 6, we obtain:

THEOREM 3. Problem A has a solution.

We now investigate the uniqueness of the solution.

LEMMA 7. There exists a continuous map eof A onto V, where V is the
set of (A, E) that satisfies (2). (Note {li}f-o is a fixed set.)

Proof e is the mapping obtained from the solution of the difTerential
equation (4), that maps A(O) into A(l), E(l). Since a solution of the differen
tial equation (4) depends continuously on the initial values and parameters
the mapping is continuous. If d" = I" k = 0,... , N, then A(s) ~cc A(O),
E(s) = s is the unique solution of (4), showing the mapping is onto.

LEMMA 8. Each point of V is an isolated point.

Proof Consider the system of equations

k = O, ... ,N,

where Xo = 0, X"i = I and the xlc(A) k= I, ... , N - I are the zeros of
M'(A, x).

The Jacobian D(M(A, Xlc) - IkE)jo(A, E) is exactly F(A) of (7). By Lemma
4, det F(A) does not vanish. Hence the implicit function theorem applies
to show that locally there is exactly one solution (A, E) of (2). I

LEMMA 9. Given the points °< Xl < X 2 < ... < Xl\-l < 1 there exists
a unique A E A (with au specified) so that M'(A, Xi) = 0, i = I, ... , N - 1.

Proof The present situation does not quite satisfy the hypothesis of
Karlin and Pincus [7, Theorem 3]. However since KxCx, ~) is an ECT system
the analysis of Karlin and Pincus could be applied in the present situation.

Rather than do this, we present a proof based on the recent paper of
D. Barrow [3].

Let uM) = (aI(j8x)(x, ~)lx~x (i = 1,... , N - 1) and U be the span of the
{ui}i':,ll. Set 0 = {u E U: (dijdg i ) u(O) = 0, i = 1,... , n - l}. Since KxCx, t)
is an ECT system it follows that no non-zero member of 0 can have N - n
zeroes counting multiplicity in (a, b); that is, 0 is an extended Haar subspace
of dimension N - n in (a, b). Let {vi}i':,ln be a basis for O. By the results of
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[3] there exist unique gi with a < gl < g2 < .. , < gt < b and unique
ii = (a10 ,... , a1.111,-1 , a20 ,... , a t ,m

t
-1) such that

(! = 1, ... , N - n)

Further using the fact again that J(x(x, n is an ECTsystem we can find n - 1
independent functions (w1(g), ... , wn-lg» c U so that

j = O, ... ,m, - 1

j =c= 1, , 11 - 1
I = J , ,11 - l'

i =c I, ... , t I ==c 1, ... , n - 1

Hence we can find a unique el == (al ,... , an-I) such that

• b n~-l

o = i wM) dg . '- I ajw:;)(O)
~(t j=l

(I = 1,... ,11 - J). (10')

Further {H'l , ... , W n - 1 , VI'"'' V N - n} are independent and span U. Hence
corresponding to the set {ao, ii, el, t] there is a monospline M(x) so that

M'(Xi) = 0 i = I, ... , N - I. (11)

If another set {ao , b, b, ~} yields a monospline satisfying (II), then by the
uniqueness of (10) and (I 0'), b = el, ~ = ~, b= ii. I

LEMMA 10. The set A is connected.

Proof By lemma 9 elements in A are uniquely characterized by their
zeros. Given two monosplines M(A l , x) and M(A 2 , x) with AI' A 2 E 0,
and with M'(A, , x) having zeros xtlA i ), we foIlow Cavaretta [4], in con
structing A(.I') for s E [0,1] such that M'(A(s), x) has zeros:

k = I,..., N - I. (12)

This will establish Lemma 10, for it will show that A is pathwise connected.
To find A(s), we are lead to the system of differential equations:

o =~ (;~ (M'(A(s), xk(A l ) + s(x,,(Az) - xiA l »

A(O) = Al .

k = I, ...,N- I

(13)
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Written out, this becomes

Tn (14)

k=I, .... /V-l
A(O) = Ai'

8H2

K~.,(x, gi) =, ax2 agj K(x, g)I Hi •

We may write this as

dA
G(A(s)) ds - = H(s) (with ao(s) not appearing). (15)

If A Ell, one sees from (15) using the fact that K,,(x, g) is an ECT system
that det G(A) #- O. Hence near s = 0, with initial condition A(O) = A1 ,

(15) can be written

dA
-~ = G-l(A(s)) H(s)
ds

(16)

where the right hand side is a continuously differentiable function of A.
Thus for s near 0 (16) has a unique solution.

When A(s) exists for 0 = s < (3 = 1, it follows from (12) that M'(A(s), x)
has N - 1 distinct zeros in (0, I). Using Lemmas 2 and 3 and arguing as in
Lemma 5 it follows that for some sequence Sv ------>- (3, lim A(sv) =~ A, with
A E 11. We can infer then that (16) has a solution for all s in some open
interval containing [0, 1]. I

THEOREM 4. Problem A has one and only one solution.

Proof The result follows if we can show that the set V defined in Lemma
7 consists of one point. V is connected and non-empty, since it is the con
tinuous image of the connected non-empty set 11 by Lemma 7. Lemma 8
asserts that V consists of isolated points. I
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ApPLICATIONS
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S. Karlin [9, p. 56] has shown that for each ex > 0, Kix, t) = 1/(1 - xg)a
is ETP for -I < x, t < I; hence, this kernel fits our criterion. Thus

THEOREM 5. Among all monosplines of the form

b n-l f mi-1

M(A, x) = f Ka(x, 0 dt -~- I K~j(x, 0) + I I aijK~j(x, ti)
(l. j=O i=l j=O

with I) < a < b < d' < I, °~ tl < ... ~ tt ~ d', mi odd, and n ~ I,
there exists one and only one element of minimal uniform norm over [0, 1].
This minimal monospline is uniquely characterized by a set of N + 1 points°= Xo < Xl < ... < X N = I such that

i = O, ... ,N.

A similar result holds for the kernel exp(xt).
Finally we remark that our results are still valid if in Assumption I, we

have c = 0, d = I. However in this case some of the proofs would be more
complicated.
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